ХІМІЧНІ НАУКИ

Стецьків А.О.

кандидат хімічних наук, доцент, завідувач кафедри, Івано-Франківський національний медичний університет

ЕЛЕКТРОННА СТРУКТУРА ТЕРНАРНОЇ СПОЛУКИ УВ5NA4GE4

На даний час системи складу R-Na-X (R – рідкісноземельний метал) практично не вивчались через високу хімічну активність досліджуваних зразків. Перші дослідження взаємодії компонентів у них відбулись нещодавно і описані авторами [1; 2]. У цих роботах повідомили про існування сполук складу EuNa₈Sn₆, EuNa₁₀Sn₁₂ та YbNa₁₀Sn₁₂. В публікації [3] методом монокристалу досліджено кристалічну структуру тернарної сполуки Nd₄NaSn₄, яка кристалізується в структурному типі Tm₄LiGe₄.

При вивченні взаємодії компонентів у системі Yb-Na-Ge було встановлено утворення потрійного германіду Yb₅Na₄Ge₄, результати дослідження якого приведено нижче.

Сплави виготовляли у два етапи, використовуючи для синтезу метали наступної чистоти: натрій – 0,9997, ітербій > 0,999, германій – 0,9999 масових часток основного компоненту. Під час першого етапу шихту із наважок чистих компонентів нагрівали в індукційній печі у танталовому тиглі до температури 400°С та витримували протягом 4 годин.

Під час другого етапу нагрівали сплави до температури 800°С та витримували протягом 1 години. Контроль маси сплавів шляхом порівняння маси шихти з масою сплаву не проводили, оскільки тигель був герметично запаяний, що унеможливлює будь-які втрати.

Гомогенізуючий відпал проводили при температурі 200°С протягом трьох тижнів. Сплави поміщали в танталові контейнери і запаювали у кварцові ампули з попередньою евакуацією повітря. Відпал проводили у муфельній печі типу МП-60 з автоматичним регулюванням температури з точністю ±5°С. Відпалені сплави гартували у вазеліновому маслі кімнатної температури, не розбиваючи ампул.

Контроль рівноважності гомогенності i зразків здійснювали рентгенографічно. Сплави зберігали під шаром індиферентного масла, Фазовий попередньо очищеного та зневодненого. аналіз проводили, використовуючи порошкових дифрактограми зразків, отримані на дифрактометрах URD-6 (СиК_а-випромінювання).

Монокристал сірого кольору у вигляді пластини відібрали зі зразку складу Yb₄₀Na₃₀Ge₃₀. Масив рентгенівських дифракційних даних отримали за кімнатної температури на автоматичному монокристальному дифрактометрі XCALIBUR (МоК_α-випромінювання, графітовий монохроматор, ω – метод сканування). Результати обчислення та уточнення кристалічної структури сполуки $Yb_5Na_4Ge_4$ засвідчили, що вона є ізоструктурною до структурного типу $Nb_5Cu_4Si_4$, який є надструктурою до Sm_9Ga_4 [4]. Досліджений германід характеризується просторовою групою *I4/m* та символом Пірсона *tI26*. Параметри комірки для нього приймають наступні значення: a = 1,1607 (1) нм, c = 0,45298 (2) нм).

Розрахунок електронної структури виконано за допомогою програмного пакету ТВ-LMTO-ASA [5] для з'ясування причин утворення хімічного зв'язку. Упорядкована модель потрійної фази Yb₅Na₄Ge₄ (рис. 1) зі структурою типу Nb₅Cu₄Si₄ була проаналізована. За результатами розрахунків встановлено, що атоми ітербію та натрію віддають свої електрони атомам германію, навколо яких функція електронної локалізації є більшою за 0,83. Натомість, біля атомів Yb та Na ця функція наближається до нуля.

Густина станів в області рівня Фермі свідчить про металічний тип зв'язку у дослідженій тернарній фазі, хоча не виключається слабка ковалентна взаємодія між атомами германію.

Рис. 1. Функція локалізації електронної густини (ELF) у моделі тернарної фази Yb₅Na₄Ge₄

Список використаних джерел:

1. Todorov I., Sevov S. C. Heavy-metal aromatic rings: cyclopentadienyl anion analogues Sn5(6-) and Pb5(6-) in the Zintl phases Na_8BaPb_6 , Na_8BaSn_6 , and Na_8EuSn_6 // Inorganic Chemistry. – 2004. – Vol. 43(20). – P. 6490-6494.

2. Todorov I., Sevov S. C. In search of benzene-like Sn6(6-): synthesis of Na_4CaSn_6 with interconnected cyclohexane-like Sn6(6-) // Inorganic Chemistry. – 2006. – Vol. 45(11). – P. 4478-4483.

3. Стецьків А. О., Павлюк В. В. Кристалічна структура R₄NaSn₄ (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy) // Наук. вісник Ужгород. ун-ту (Сер. Хімія), 2014, № 2(32). – С. 23-27.

4. Yatsenko S. P., Hryn' Yu. N., Sitschevitsch O. M., Tschuntonow K. A. Die Struktur von Sm_9Ga_4 // J. Less Common Metals. 1985. – Vol. 106, No 1. – P. 35–40.

5. Krier G., Jepsen O., Burkhardt A., Andersen O. K. The TBLMTO-ASA program, version 4.7 // Max-Planck-Institut für Festkörperforschung: Stuttgart, Germany, 2000.

Михалічко О.Б.

кандидат хімічних наук, хімік-аналітик, ТОВ «ФУКС МАСТИЛА Україна»

Федина Л.О.

кандидат хімічних наук, доцент, завідувач кафедри, Львівський інститут економіки і туризму

Федорчук А.О.

доктор хімічних наук, професор, Львівський національний університет ветеринарної медицини та біотехнологій імені С. З. Ґжицького

Федина М.Ф.

кандидат хімічних наук, доцент, завідувач кафедри, Національний лісотехнічний університет України

КРИСТАЛІЧНА СТРУКТУРА ТЕТРАРНОЇ СПОЛУКИ LA₂CU₃GA₃GE₂

Сполуки зі структурою впорядкованої надструктури CeGa₂Al₂ до типу BaAl₄ у потрійних системах *R*-Cu-Ge, де R – рідкісноземельний метал, мають чи не найбільше представників серед структурних типів [1-5]. Бінарних германідів з таким типом структури досі не виявлено. Серед тернарних галідів Купруму і РЗМ частіше реалізується структурний тип BaAl₄ [6-13], причому утворюються також бінарні ґаліди з цією структурою. Тому цікавою була перевірка існування тетрарної фази, яка містила б у своєму складі як Галій, так і Германій.

Дифракційним рентгенівським методом порошку (дифрактотометр Huber G670 Imaging Plate Guinier camera, Cu $K\alpha_1$ – випромінювання, інтервал $10^\circ \le 2\theta \le 100^\circ$, крок сканування – 0,015°) досліджено кристалічну структуру нової тетрарної сполуки La₂Cu₃Ga₃Ge₂.

Сплав масою 1 г виготовлено в електродуговій печі з вольфрамовим електродом на мідному водоохолоджуваному поді в атмосфері очищеного аргону з металів високої чистоти (не менше 99,85 мас. % основного компонента). Як гетер використано губчастий титан. Зразок гомогенізовано при 870 К протягом 900 год у вакуумованій кварцовій ампулі з подальшим гартуванням у холодній воді. Профільні та структурні параметри уточнено порівнянням Рітвельда – теоретично розрахованих методом профілів експериментальними. дифрактограм Уci розрахунки 3 виконано 3 використанням комплексу програм WinCSD [14].