5. Krier G., Jepsen O., Burkhardt A., Andersen O. K. The TBLMTO-ASA program, version 4.7 // Max-Planck-Institut für Festkörperforschung: Stuttgart, Germany, 2000.

Михалічко О.Б.

кандидат хімічних наук, хімік-аналітик, ТОВ «ФУКС МАСТИЛА Україна»

Федина Л.О.

кандидат хімічних наук, доцент, завідувач кафедри, Львівський інститут економіки і туризму

Федорчук А.О.

доктор хімічних наук, професор, Львівський національний університет ветеринарної медицини та біотехнологій імені С. З. Ґжицького

Федина М.Ф.

кандидат хімічних наук, доцент, завідувач кафедри, Національний лісотехнічний університет України

КРИСТАЛІЧНА СТРУКТУРА ТЕТРАРНОЇ СПОЛУКИ LA₂CU₃GA₃GE₂

Сполуки зі структурою впорядкованої надструктури CeGa₂Al₂ до типу BaAl₄ у потрійних системах *R*-Cu-Ge, де R – рідкісноземельний метал, мають чи не найбільше представників серед структурних типів [1-5]. Бінарних германідів з таким типом структури досі не виявлено. Серед тернарних галідів Купруму і РЗМ частіше реалізується структурний тип BaAl₄ [6-13], причому утворюються також бінарні ґаліди з цією структурою. Тому цікавою була перевірка існування тетрарної фази, яка містила б у своєму складі як Галій, так і Германій.

Дифракційним рентгенівським методом порошку (дифрактотометр Huber G670 Imaging Plate Guinier camera, Cu $K\alpha_1$ – випромінювання, інтервал $10^\circ \le 2\theta \le 100^\circ$, крок сканування – 0,015°) досліджено кристалічну структуру нової тетрарної сполуки La₂Cu₃Ga₃Ge₂.

Сплав масою 1 г виготовлено в електродуговій печі з вольфрамовим електродом на мідному водоохолоджуваному поді в атмосфері очищеного аргону з металів високої чистоти (не менше 99,85 мас. % основного компонента). Як гетер використано губчастий титан. Зразок гомогенізовано при 870 К протягом 900 год у вакуумованій кварцовій ампулі з подальшим гартуванням у холодній воді. Профільні та структурні параметри уточнено порівнянням Рітвельда – теоретично розрахованих методом профілів експериментальними. дифрактограм Уci розрахунки 3 виконано 3 використанням комплексу програм WinCSD [14].

Сполука La₂Cu₃Ga₃Ge₂ належить до структурного типу BaAl₄ (символ Пірсона *tI*10, просторова група *I*4/*mmm*, a = 4,24135 (3), c = 10,3365 (1) Å, V = 185,943 (5) Å³; $R_I = 0,0516$, $R_P = 0,1285$). Координати, ізотропні параметри коливання атомів у структурі сполуки La₂Cu₃Ga₃Ge₂ наведені в таблиці 1.

Таблиця 1

у структурт сполуки La2Cu3Ga3Ge2						
Атом	ПСТ	x	У	Ζ.	B_{i30} (Å ²)	
La	2 (<i>e</i>)	0	0	0	1,11 (3)	
M1*	4 (<i>d</i>)	0	1/2	1/4	1,17 (5)	
M2**	4(f)	0	0	0.3794 (2)	1.42 (5)	

Координати, ізотропні параметри коливання атомів у структурі сполуки La₂Cu₃Ga₃Ge₂

*M1 = 0,750 Cu + 0,250 Ga;**M2 = 0.500 Ga + 0.500 Ge.

Координаційні многогранники атомів у структурі сполуки $La_2Cu_3Ga_3Ge_2$ аналогічні до поліедрів вихідної структури типу $BaAl_4$ (рис. 1): для атомів La – гексагональні призми з шістьма додатковими атомами, для атомів статистичних сумішей M1 та M2 – тетрагональні антипризми з одним додатковим атомом і кубооктаедри, відповідно.

Рис. 1. Елементарна комірка структури сполуки La₂Cu₃Ga₃Ge₂ та координаційні многогранники атомів

Очевидно, що домінуючим фактором для реалізації цього структурного типу у названих системах є не природа *X*-компонента, а концентрація валентних електронів на формульну одиницю.

Список використаних джерел:

1. Salamakha P. S., Konyk M. B., Dzyanyi R. et al. Systematics of rare earth-coppergermanium systems // Polish J. Chem. – 1996. – Vol. 70. – P. 270–274.

2. Белан Б. Д. Фазовые равновесия, кристаллические структуры и свойства соединений в тройных системах Eu-{Fe,Co,Ni,Cu}-{Si,Ge}: Автореф. дис. ... канд. хим. наук. Львов, 1988. – 17 с.

3. Коник М., Горинь А., Серкіз Р. Потрійна система Ег-Си-Ge при 870 К // Вісник Львів. ун-ту. Сер. хім. – 2012. – Вип. 53. – С. 42–50.

4. Fedyna L. O., Bodak O. I., Tokajchuk Ya. O. et al. Ternary system Tm-Cu-Ge: isothermal section of the phase diagram at 870K and crystal structures of the compounds // J. Alloys Compd. - 2004. - Vol. 367. - P. 70–75.

5. Федына Л., Федына М., Федорчук А. Дослідження системи Sm-Cu-Ge при 870 К // Вісник Львів. ун-ту. Сер. хім. – 2014. – Вип. 55. – Ч. І. – С. 77–86.

6. Шевченко И. П., Маркив В. Я., Кузьменко П. П. Изотермические сечения (500°С) диаграмм состояния систем {La,Ce,Pr,Nd}-Cu-Ga // Вестн. Киев. ун-та. Физика – 1987. – Вып. 28. – С. 7–16.

7. Шевченко И. П., Маркив В. Я. Фазовые равновесия и кристаллическая структура соединений в системах Eu-Cu-Ga и Yb-Cu-Ga // Изв. РАН. Мет. – 1993. – № 6. – С. 183–189.

8. Шевченко И. П., Маркив В. Я., Белявина Н. Н., Кузьменко П. П. Фазовые равновесия и кристаллическая структура соединений в системах Gd-Cu-Ga и Tb-Cu-Ga // Вестн. Киев. ун-та. Физика – 1988. – Вып. 29. – С. 10–18.

9. Шевченко И. П., Маркив В. Я., Ярмолюк Я. П., Гринь Ю. Н., Федорчук А. А. Фазовые равновесия и кристаллическая структура соединений в системе Ho-Cu-Ga // Изв. АН СССР. Мет. – 1989. – № 1. – С. 214–217.

10. Шевченко И. П., Маркив В. Я., Кузьменко П. П. Фазовые равновесия (500°С) и кристаллическая структура соединений в системах Er-Cu-Ga и Tm-Cu-Ga // Деп. В УкрНИИНТИ. 15.09.1987. – № 2528.

11. Belgacem B., Pasturel M., Tougait O. et al. Crystal structure and magnetic properties of novel intermetallic compounds in the Er-Cu-Ga system // J. Alloys Compd. -2009. - Vol. 478. - P. 89-95.

12. Маркив В. Я., Шевченко И. П., Белявина Н. Н. Фазовые равновесия и кристаллическая структура соединений в системе Lu-Cu-Ga // Изв. АН СССР. Мет. – 1989. – № 2. – С. 204–207.

13. Михалічко О. Б. Фазові рівноваги та кристалічна структура сполук у системах {La, Gd, Er}-Cu-Ga-Si при 600°С: Автореф. дис. ... канд. хім. наук: 02.00.01 / Львів. нац. ун-т. Львів, 2013. – 20 с.

14. Akselrud L. G., Zavalii P. Yu., Grin Yu. N., Pecharsky V. K. et al. Use of the CSD program package for structure determination from powder data // Mat. Sci. Forum – 1993. – Vol. 133–136. – P. 335–340.