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USING LAPLACE TRANSFORM
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1. The Laplace Transform

1.1.  Laplace Transform. Inverse Transform.

If £ (t) is a function defined for all t > 0, its Laplace transform is the integral of
f (t) times eS¢ from t = 0 to oo It is a function of s, say, F (s) and is denoted by
L (x), thus

F(s) =L(f) = [, e~ f(t)dt (1)
Here we must assume that is f (t)such that the integral exists. This assumption
is usually satisfied in applications-we shall discuss this near the end of the section.
Not only is the result called F (s) the Laplace transform, but the operation just
described, which yields from F (s) a given, is f (t) also called the Laplace transform.
It is an «integral transformy

F(s) = [, k(s,)f (t)dt 2)
With «kernel» k(s,t) = eS¢
Furthermore, the given function f (t) in (1) is called the inverse transform of
and F (s) is denoted by L™ (F); that is, we shall write
_ o @=L (F) _ (3
Notation: Original functions depend on t and their transforms on s-keep this in
mind! Original functions are denoted by lowercase letters and their transforms by the
same letters in capital, so that F (s) denotes the transform of f (t), and Y (s) denotes
the transform of y (t), and so on.

1.2.  Transforms of Derivatives and Integrals. ODEs

The Laplace transform is a method of solving ODEs and initial value problems.
The crucial idea is that operations of calculus on functions are replaced by operations
of algebra on transforms. Roughly, differentiation of f (t) will correspond to
multiplication of L (f) by s (see Theorems 1) and integration of f (t) to division of
L (f) by s. To solve ODEs, we must first consider the Laplace transform of
derivatives

THEOREM 1: The transforms of the first and second derivatives of f (t)

satisfy
L(f") = sL(f) = f (0) (4)
L(f")=s*L(f) —sf(0) — f' (0) ()
Formula (4) holds if f (t) is contilluous for all t > 0 and satisfies the growth
restriction (5) in Sec. 1.1 and f' (t) is piecewise continuous on every finite interval
on the semi-axist > 0. Similarly, (4) holds if f and f” are continuous for t > 0 all
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and satisfy the growth restriction and f» is piecewise continuous on every finite
interval on the semi-axis t > 0.

2. Heaviside Step function and Dirac Delta
2.1.  Heaviside Step function
The unit step function or Heaviside function. The unit step function or Heaviside
function is defined by
1forx=>0
u(x) = {O forx <0
The most often-used formula involving Heaviside function is the characteristic
function of the interval a < t < b, given by
la<t<b

ut—a)—ute=b) ={o ")

To illustrate, a square wave sqw(t) = (—1)71°°7(® can be written in the series
from

D (= n) —ue—n - 1),
n=0

2.2.  Dirac Delta function
To model situations of that type, we consider the function

1.
fk(t—a)={Elfa§tsa+kFigure.1} (6)
0 otherwise

This function represents. For instance. A force of magnitude 1/k acting from
t =atot = a + k, where kis positive and small. In mechanics, the integral of
force acting over a time interval a <t < a + k is called the impulse of the force;
similarly for electromotive forces E (t) acting on circuits. Since the blue rectangle in

Figure 1 has area 1, the impulse of f;, in (6) is
a+k

Ikzjooofk(t—a)dtzfo Edtzl (7)

To find out what will happen if k becomes smaller and smaller, we take the limit
of f ask —> 0 (k > 0).this limit is denoted by 6§ (t — a), that is,

6(t — a) =Ilci_r>r(1)fk (t—a)

6 (t — a) is called the Dirac delta function or the unit impulse function.

6 (t — a) is not a function in the ordinary sense as used in calculus, but a so-
called generalizedjullction. To see this, we note that the impulse [, of f; is I, so that
from (6) and (7) by taking the limit as k —> 0 we obtain

ot — a)z{ooift=a and JOO(S(t— a)dtzl}
0

0 otserwise

but from calculus we know that a function which is everywhere 0 except at a
single point must have the integral equal to O. Nevertheless, in impulse problems it is
convenient to operate on §(t — a)as though it were an ordinary function. In
particular, for a continuous function g (t) one uses the property
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Joog(t)S(t — a)dt = ga
0

Which is plausible by (7)? To obtain the Laplace transform of 6(t — a), we
write
1
flt —a) =2 [ut—a) —u(t = (a+k)]

—~frea =1
Lik

a a+k t
Fig. 1. The function f, (t — 0) in (6)

EXAMPLE 1: Unrepeated Complex Factors. Damped Forced Vibrations
Solve the initial value problem for a damped mass-spring system acted upon by
a sinusoidal force for some time interval,

y" +2y"+ 2y =r(t), r(t)
=10sin2tif 0<t<mandO0ift>m; y(0) =1y'(0) = -5
Solution. The subsidiary equation

2y _ — __ ,—TS
(s°Y —s+5)+2(sY —1)+2Y 1052+4(1 e ™)
We collect the Y-terms, (s? + 2s + 2)Y, take —s + 5 — 2 = —s + 3to
the right, and solve,
20 20e™ ™ s—3
Y = - + (8)
(s2+4)(s?2+25+2) (s24+4)(s?2+25s+2) (s?+2s+2)
(st+t1-4 _ _
1{(s+1)2+1}=e t(cost — 4sint) (9)

In the first fraction in (8) we have unrepeated complex roots, hence a partial
fraction representation
20 As + B Ms + N

= +
(s?+4)(s?+2s+2) s24+4 s2+4+2s+2
Multiplication by the common denominator gives
20 = (As + B) (s> + 25 + 2) + (Ms + N) (s* + 4).

We determine A, B, M, N. Equating the coefficients of each power of s on both
sides gives the four equations

(@) [s3]:0 = A+ M(b)[s?]:0 =24+ B + N

(c) [s*]:0 = 2A + 2B + 4M (d) [s°]: 20 = 2B + 4N.

We can solve this, for instance, obtaining M = —A from (a), then A = B from
(c),then N = — 3A from (b), and finally A = —2 from (d). Hence A = -2,

(10)
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B = —-2,M = 2,N = 6.And the Fust fraction in (8) has the Represent ation
—25s—2 2(s+1)+6-2

+ 11
s?2+4 (s+1)*+1 1D

Inverse transform —2 cos 2t — sin2t + e~t (2cost + 4 sint)
The sum of this and is the, solution of the problem for 0 < f < m namely.

y(t) =3e7t cost —2cos2t —sint if (0<t<m) (12)
In the second fraction in (11) taken with the minus sign we have the factor
e ™ so that from (11) and the second shifting theorem we get the inverse transform
+2 cos(2t — 2m) + sin(2t — 2m) — e~ E"™[2 cos(t — ) + 4 sin(t — 7)]

=2cos2t +sin2t + e ™ (2cost + 4sint)

Sum of the this and (12) is the solution for > r,
y(t) = e (3 + 2e™) cost + 4e™ sint] (13)

Figure 2 shows (12) (for 0 < t < m) and (13) (for t > m), a beginning
vibration, which goes to zero rapidly because of the damping and the absence of a
driving force aftert = &

it}
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Fig. 2. Damped Forced Vibrations

CONCLUSIONS

e The main purpose of Laplace transforms is the solution of differential
equations and systems of such equations, as well as corresponding initial value
problems. The Laplace transform F (s) = L (f) of a function f (t) is defined by

F(s) = L(f) = [ e™f (t)dt (sec. 1.1)

e This definition is motivated by the property that the differentiation of f with
respect to t corresponds to the multiplication of the transform F by s; more precisely,

L(f") = sL(f) = f (0) (sec. 1.2)
L(f") = s*L(f) — sf(0) — f'(0)

e The reason is that we shall introduce two auxiliary functions, the unit step
function or Heaviside function u (¢t — a) and Dirac's delta § (t — a).

e Delta function is one of so-called generalized functions, which are not
functions in ordinary sense but as an operator that sometimes can be represented by
ordinary functions.
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acniparwm,
Hayxkoesuii kepignux: Credasiuko I1.O.
00KmMop Qi3uKo-mamemamuyHux HayK, npogecop,
Yepracvkuti HayioHanvHull yHigepcumem imeni boeoana XmenvHuybko2o

HOBHIi BAPIAHT METOJIY JOCJUTKEHHS
MEXAHIYHNUX XAPAKTEPUCTHUK IJIACTUH
TA OBOJIOHOK 3MIHHOI TOBIIWHHU NIABUIIEHOTI TOYHOCTI

Po3BUTOK  CydacHOi  MPOMHCIOBOCTI  HEMOXJIMBO  MpeACTaBUTH  0€3
BUKOPUCTAaHHS O0OJIOHKOBUX KOHCTPYKIIIH, SIK Pe3yJibTaT, BUHUKAIOTh PI3HOMAHITHI
dbopmu 00’€KTiB, AKI 3HAXOJATh CBIA IIMPOKUN CHEKTP 3aCTOCYBaHHS y PI3HHUX
00JIacTAX HAyKW Ta TEeXHIKU. [IpuKiIagoM TakuMx KOHCTPYKUIN €: (uiaHill, AUCKOBI
NPYXXKUHH, CHIb(OHH, KOT/IH, OaIOHH, pOTOpH, Oapabanu, TPyOOIPOBOAH, KOpITyca
(JiTakiB, BEPTONBOTIB, PakeT, KOPaOIiB, sICPHUX peakTopis). bepyun 1o ysaru
MPAKTUYHY 3HAYYIIICTh KOXKHOTO CIEMEHTA i3 MEPEPAXOBAHMX, CTAE 3PO3YMLIIO, 110
10 OOO0JIOHKOBUX KOHCTPYKLINA BHCYBAIOTBCSI JKOPCTKI YMOBH, PO3PaXyHOK SIKHX
MOB’s13aHUI 13 TOOYIOBOIO PO3PAaXyHKOBHX CXEM Ta MaTeMAaTUYHHX MOJENed 13
3aCTOCYBAaHHSIM CYYaCHUX YHUCEIbHUX METOJIB JOCIIIKEHb, SIKI MOXKHA pealli3yBaTH
B MTAKEeTax Mporpam Ta MPOTPaMHUX KOMIIIEKCIB [2].

3HayHa yBara 10 OOONOHOK Ta HEOOXiZHICTH CTBOPCHHS BIIACHOPYY
Pi3HOMAHITHHX OOOJOHKOBHX KOHCTPYKLil MOSCHIOETECSI THM, IO BOHU BOJIOIIIOTH
HAJ[BAXKTMBUMU BIIACTUBOCTSIMU HA MIIIHICTb, )KOpCTKlCTL CTIHKICTb.

Knacuynum migxoaoMm 10 noOyZ0BU TEOPii 000TOHOK € BUKOPUCTaHHS rinoTe3 ado
CTPOIIYIOYH TIPOTIO3HIIIN, TIEPEBAror0 BUKOPUCTAHHS TAKOTO MIAXOIy € Te, 0 BUXIHI
CHIBBIAHOIICHHS MarOTh JOCTaTHHO MPOCTE€ MaTeMaTH4HE (OPMYJIOBAHHS, Yy TaKUA
croci0 MO)KHa 3BECTH BUXIJIHI CITIBBIIHOIICHHSI TPUBUMIPHOI TEOpii MPY>KHOCTI 10
JTIBOBHMIPHUX piBH}IHB HaykoBi mipatii mpucBsideHi Teopii 000JOHOK 13 3aCTOCYBaHHSIM
crnpolyrounx rinores, Hajexats C. [1. Tumomenky, L. T'. By6HOBy, b. I'. l'anepkiny.

Ilpu po3pobui MeToxiB OOYHMCICHB OOOJIOHOK 13 Cy4aCHHX KOMIIO3HTHHX
MaTepianiB, s SKMX XapakTepHa aHI30TPOMNis Ta HEOJHOPIAHICTH MEXaHIYHHX
BIACTUBOCTCH OOOJIOHOK Ha $IKI IMOLIMPIOIOTBCS JIOKAIbHI BIUIMBH, HEOOXiIHO
BpaxoByBaTH MomnepeyHi nedopmaiii 1 HAIpyKeHHs, K1 HE PO3TJsLAae KiIacHuHa
Teopis. Y 1bOMY BUIMAJAKY PO3POOISIOTh YTOUHEHY TEOPit0 OOOJIOHOK, SIKa JO3BOJISIE



