ФІЗИКО-МАТЕМАТИЧНІ НАУКИ

Бабаєв О.А.

кандидат фізико-математичних наук, доцент;

Штефан Н.І.

кандидат технічних наук, доцент;

Гнатейко Н.В.

кандидат технічних наук, доцент, Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

ДОСЛІДЖЕННЯ ПЕРЕХІДНИХ ПРОЦЕСІВ ПРИ ВИПРОМІНЮВАННІ АКУСТИЧНИХ ХВИЛЬ ЦИЛІНДРИЧНОЮ П'ЄЗОКЕРАМІЧНОЮ ОБОЛОНКОЮ

Розглядається стаціонарна задача випромінювання акустичних хвиль гідроелектропружною системою, що складається з циліндричної п'єзокерамічної оболонки яка контактує з ідеальною стисливою рідиною. Циліндрична п'єзокерамічна оболонка збуджується стаціонарними електричними сигналами *U*, що подаються на струмопровідні поверхоні безпосередньо.

Будемо вважати, що циліндрична п'єзокерамічна оболонка радіусом R та товщиною $h \in$ нескінченно довгою, тонкостінною та оточена ідеальною стисливою рідиною з густиною ρ і швидкістю розповсюдження звука c. У внутрішньому об'ємі – вакуум. Вважається, що циліндрична оболонка поляризована по товщині у радіальному напрямку, а на струмопровідні поверхні подається безпосереднью стаціонарний електричний сигнал. Збуджений рух оболонки моделюється співвідношеннями теорії тонких електропружних оболонок, яка базується на гіпотезах Кірхгофа-Лява, а динамічні процеси які виникають у середовищі описуються в рамкам акустичної теорії.

При описанні динамічної поведінки розглянутої гідроелектропружної системи при збудженні п'єзокерамічної оболонки стаціонарними електричними сигналами необхідно скласти систему рівнянь, що описує коливання оболонки та контактуючою з нею рідиною при відповідних граничних умовах, умовах для електричної складової поля, умовах на нескінченності.

для електричної складової поля, умовах на нескінченності. Рівняння руху тонкостінної п'єзокерамічної оболонки з урахуванням прийнятих припущень мають наступний вигляд:

$$-w + \frac{e_{13}}{C_{11}^E d_{33}} E_r^{(0)} = \frac{\rho_m c^2}{C_{11}^E} \frac{\partial^2 w}{\partial t^2} + \frac{\rho c^2 R}{C_{11}^E h} q, \qquad (1)$$

де w – нормальні переміщення точок серединної поверхні; $E_r^{(0)}$ та q – напруженість електричного поля та гідродинамічне навантаження, що діє на

циліндричну оболонку; ρ_m, C_{11}^E, e_{13} і d_{33} – густина, модуль пружності, п'єзомодуль, діелектрична проникність і п'єзоелектрична постійна кераміки; t – час.

Збуджений рух рідини у зовнішньому середовищі, який виникає в разі збудження оболонки стаціонарним сигналом, описується хвильовим рівнянням, яке має для плоскої задачі в полярних координатах (*r*, *θ*) наступний вигляд:

$$\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} = \frac{\partial^2 \varphi}{\partial t^2},$$
(2)

де φ – хвильовий потенціал швидкості збудженого руху рідини у зовнішньому середовищі.

Гідродинамічне навантаження, що діє на оболонку, створюється тиском який виникає у рідині:

$$q = -p\big|_{r=R},\tag{3}$$

де співвідношення

$$p = -\frac{\partial \varphi}{\partial t},\tag{4}$$

$$V_r = \frac{\partial \varphi}{\partial r} \tag{5}$$

описують гідродинамічний тиск та швидкість, що виникають в акустичному середовищі.

Напруженість електричного поля, яка виникає в п'єзокерамічній оболонки, коли подається на струмопровідні поверхні електричний сигнал, при обраному варіанті поляризації, може бути представлена у наступному вигляді:

$$E_r^{(0)} = -\frac{U}{h},$$
 (6)

де U – конфігурація стаціонарного електричного сигналу.

Як граничні приймаються умови безвідривного контакту поверхні оболонки (*r* = *R*) з рідиною:

$$\frac{\partial w}{\partial t} = \frac{\partial \varphi}{\partial r} \bigg|_{r=R}.$$
(7)

Крім наведених граничних умов обов'язковою є умова згасання на нескінченності розбіжності звукових хвиль.

Сформульована математична постановка задачі виконана у безрозмірних позначеннях, згідно з якими величини *w*, *h* віднесені до радіусу оболонки *R*; $E_r^{(0)}$ – до $1/d_{33}$; t – до R/c; q – до ρc^2 ; U – до R/d_{33} ; φ – до Rc; V_r – до c.

Розв'язання задачі. Невідомі функції $w, q, \varphi, V_r, E_r^{(0)}, U$, які описують динамічні процеси в оболонці та акустичному середовищі будемо шукати в наступному вигляді:

$$w = w_0 e^{i\omega t}, \tag{8}$$

$$q = q_0 e^{i\omega t}, \tag{9}$$

$$\varphi = \varphi_0 e^{i\omega t}, \tag{10}$$

$$V_r = V_{r0} e^{i\omega t} , \qquad (11)$$

$$E_r^{(0)} = E_{r0}^{(0)} e^{i\omega t}, \qquad (12)$$

$$U = U_0 e^{i\omega t} \,. \tag{13}$$

Після підстановки співвідношень (8) – (13) в систему рівнянь (1) – (7), що описує динамічні процеси в даній гідроелектропружній системі, отримаємо залежності для переміщення оболонки

$$aw_0 = bi\varphi_0 + dU_0, \tag{14}$$

$$i\omega w_0 = \frac{\partial \varphi_0}{\partial r}\Big|_{r=R},\tag{15}$$

та хвильового потенціалу

$$\frac{\partial^2 \varphi_0}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi_0}{\partial r} = -\omega^2 \varphi_0, \qquad (16)$$

$$Ae \ a = \frac{\rho_m c^2 \omega^2}{C_{11}^E} - 1; \ b = -\frac{\rho c^2 \omega R}{C_{11}^E h}; \ d = \frac{e_{13}}{C_{11}^E d_{33} h}$$

Загальний розв'язок отриманого хвильового рівняння (16), з урахуванням згасання хвиль на нескінченності має наступний вигляд:

$$\varphi_0 = BH_0^{(2)}(\omega r), \qquad (17)$$

де $H_0^{(2)}(\omega r) - функція Ханкеля другого роду нульового порядку.$

Після підстановки загального розв'язку хвильового рівняння (17) у граничну умову (15) та залежність (14) наступну систему яка описує переміщення оболонки

$$-i\omega w_0 = B \frac{\partial H_0^{(2)}(\omega r)}{\partial r} \bigg|_{r=R} = -B\omega H_1^{(2)}(\omega R),$$

і остаточно

$$w_{0} = \frac{b}{a} iBH_{0}^{(2)}(\omega R) + \frac{d}{a}U_{0},$$

$$w_{0} = -iBH_{1}^{(2)}(\omega R),$$
(18)

де $H_1^{(2)}(\omega r)$ – функція Ханкеля другого роду першого порядку, *В* – невідомий коефіцієнт.

Прирівнявши з системи (18) перше та друге рівняння знайдемо коефіцієнт В

$$B = -\frac{\frac{a}{a}iU_{0}}{-H_{1}^{(2)}(\omega R) + \frac{b}{a}H_{0}^{(2)}(\omega R)}.$$
(19)

Для знаходження коефіцієнта ^В необхідно знати вигляд функцій Ханкеля другого роду нульового та першого порядків. Ці функції мають наступний вигляд:

$$H_{\nu}^{(1)}(z) = J_{\nu}(z) + iN_{\nu}(z), \quad H_{\nu}^{(2)}(z) = J_{\nu}(z) - iN_{\nu}(z), \tag{20}$$

де $J_{\nu}(z) - функція Беселля першого роду, N_{\nu}(z) - функція Неймана.$

Для малих значень z функції $J_{\nu}(z)$ та $N_{\nu}(z)$ мають наступний вигляд:

$$J_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! \Gamma(\nu + k + 1)} \left(\frac{z}{2}\right)^{2k} \quad (|\arg z| < \pi);$$
(21)

$$N_{\nu}(z) = \frac{1}{\sin \nu \pi} \Big[J_{\nu}(z) \cos \nu \pi - J_{-\nu}(z) \Big] \quad (\nu \neq 0, \pm 1, \pm 2...,);$$

$$N_{\nu}(z) = (-1)^{\nu} N_{-\nu}(z) = \frac{2}{\pi} J_{\nu}(z) \Big(\ln \frac{z}{2} + C \Big) - \frac{1}{\pi} \Big(\frac{z}{2} \Big)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! (\nu + k)!} \Big(\frac{z}{2} \Big)^{2k} \Big(\sum_{j=1}^{k} \frac{1}{j} + \sum_{j=1}^{\nu + k} \frac{1}{j} \Big) - \frac{1}{\pi} \Big(\frac{z}{2} \Big)^{-\nu} \sum_{k=0}^{\nu - 1} \frac{(\nu - k - 1)!}{k!} \Big(\frac{z}{2} \Big)^{2k} \quad (\nu = 0, 1, 2, ..., ; |\arg z| < \pi); \quad (22)$$

C = 0,5772156649015325 – постійна Ейлера-Маскероні.

Для великих значень $z \to \infty$ функції $J_{\nu}(z)$ та $N_{\nu}(z)$ мають наступний вигляд:

$$J_{\nu}(z) \approx \sqrt{\frac{2}{\pi z}} \left[A_{\nu}(z) \cos\left(z - \frac{\nu \pi}{2} - \frac{\pi}{4}\right) - B_{\nu} \sin\left(z - \frac{\nu \pi}{2} - \frac{\pi}{4}\right) \right];$$

$$N_{\nu}(z) \approx \sqrt{\frac{2}{\pi z}} \left[A_{\nu}(z) \sin\left(z - \frac{\nu \pi}{2} - \frac{\pi}{4}\right) + B_{\nu} \cos\left(z - \frac{\nu \pi}{2} - \frac{\pi}{4}\right) \right];$$
(23)

де функції $A_{\nu}(z)$ та $B_{\nu}(z)$ мають асимптотичне розкладення (не враховуючи остаточний член)

$$A_{\nu}(z) = 1 - \frac{(4\nu^{2} - 1)(4\nu^{2} - 9)}{2!(8z)^{2}} + \frac{(4\nu^{2} - 1)(4\nu^{2} - 9)(4\nu^{2} - 25)(4\nu^{2} - 49)}{4!(8z)^{4}};$$

$$B_{\nu}(z) = \frac{4\nu^{2} - 1}{8z} - \frac{(4\nu^{2} - 1)(4\nu^{2} - 9)(4\nu^{2} - 25)}{3!(8z)^{3}};$$
(24)

Підставляє розкладення (23) та (24) у формулу (2.20), отримаємо відповідні асимптотичні розкладання для $H_{\nu}^{(1)}(z)$ та $H_{\nu}^{(2)}(z)$. З розкладання (23) та (24) слідує, що для $z >> \nu$ при $z \to \infty$

$$J_{\nu}(z) \approx \sqrt{\frac{2}{\pi z}} \cos\left(z - \frac{\nu \pi}{2} - \frac{\pi}{4}\right), \quad H_{\nu}^{(1)}(z) \approx \sqrt{\frac{2}{\pi z}} e^{i\left(z - \frac{\nu \pi}{2} - \frac{\pi}{4}\right)},$$

$$N_{\nu}(z) \approx \sqrt{\frac{2}{\pi z}} \sin\left(z - \frac{\nu \pi}{2} - \frac{\pi}{4}\right), \quad H_{\nu}^{(2)}(z) \approx \sqrt{\frac{2}{\pi z}} e^{i\left(z - \frac{\nu \pi}{2} - \frac{\pi}{4}\right)};$$
(25)

Враховуючи те, що до складу коефіцієнта ^В входять функції Ханкеля другого роду нульового та першого порядків, тоді в нашому випадку формули (20) – (25) набувають вигляду:

$$H_1^{(2)}(z) = J_1(z) - iN_1(z), \quad H_0^{(2)}(z) = J_0(z) - iN_0(z), \tag{26}$$

Для малих значень z функції $J_0(z)$, $J_1(z)$, $N_0(z)$, $N_1(z)$ мають наступний вигляд:

$$J_0(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k+1)} \left(\frac{z}{2}\right)^{2k}; \ J_1(z) = \left(\frac{z}{2}\right) \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k+2)} \left(\frac{z}{2}\right)^{2k} \quad (|\arg z| < \pi);$$
(27)

$$N_0(z) = \frac{2}{\pi} J_0(z) \left(\ln \frac{z}{2} + C \right) - \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!k!} \left(\frac{z}{2} \right)^{2k} \left(\sum_{j=1}^k \frac{1}{j} + \sum_{j=1}^k \frac{1}{j} \right) \quad (\nu = 0, 1, 2, ...; \left| \arg z \right| < \pi)$$
(28)

$$N_{1}(z) = -N_{-1}(z) = \frac{2}{\pi} J_{1}(z) \left(\ln \frac{z}{2} + C \right) - \frac{1}{\pi} \left(\frac{z}{2} \right)_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+1)!} \left(\frac{z}{2} \right)^{2k} \left(\sum_{j=1}^{k} \frac{1}{j} + \sum_{j=1}^{k+1} \frac{1}{j} \right)$$
(29)
(v = 0, 1, 2,; |arg z| < \pi)

C = 0,5772156649015325 — постійна Ейлера-Маскероні.

Для великих значень $z \to \infty$ функції $J_0(z)$, $J_1(z)$, $N_0(z)$, $N_1(z)$ мають наступний вигляд:

$$J_0(z) \approx \sqrt{\frac{2}{\pi z}} \left[A_0(z) \cos\left(z - \frac{\pi}{4}\right) - B_0 \sin\left(z - \frac{\pi}{4}\right) \right]; \tag{30}$$

$$J_1(z) \approx \sqrt{\frac{2}{\pi z}} \left[A_1(z) \cos\left(z - \frac{3\pi}{4}\right) - B_1 \sin\left(z - \frac{3\pi}{4}\right) \right]; \tag{31}$$

$$N_0(z) \approx \sqrt{\frac{2}{\pi z}} \left[A_0(z) \sin\left(z - \frac{\pi}{4}\right) + B_0 \cos\left(z - \frac{\pi}{4}\right) \right]; \tag{32}$$

$$N_1(z) \approx \sqrt{\frac{2}{\pi z}} \left[A_1(z) \sin\left(z - \frac{3\pi}{4}\right) + B_1 \cos\left(z - \frac{3\pi}{4}\right) \right]; \tag{33}$$

де функції $A_0(z)$, $A_1(z)$, $B_0(z)$, $B_1(z)$ мають асимптотичне розкладення (не враховуючи остаточний член)

$$A_0(z) = 1 - \frac{9}{2!(8z)^2} + \frac{11025}{4!(8z)^4};$$
(34)

$$A_{1}(z) = 1 + \frac{15}{2!(8z)^{2}} - \frac{14175}{4!(8z)^{4}};$$
(35)

$$B_0(z) = -\frac{1}{8z} + \frac{225}{3!(8z)^3};$$
(36)

$$B_1(z) = \frac{3}{8z} - \frac{315}{3!(8z)^3};$$
(37)

Підставляє розкладення (30) – (33) у формулу (26), отримаємо відповідні асимптотичні розкладання для $H_1^{(2)}(z)$ та $H_0^{(2)}(z)$. З розкладання (30) – (33) слідує, що для z >> v при $z \to \infty$

$$J_{0}(z) \approx \sqrt{\frac{2}{\pi z}} \cos\left(z - \frac{\pi}{4}\right), \quad J_{1}(z) \approx \sqrt{\frac{2}{\pi z}} \cos\left(z - \frac{3\pi}{4}\right),$$

$$N_{0}(z) \approx \sqrt{\frac{2}{\pi z}} \sin\left(z - \frac{\pi}{4}\right), \quad N_{1}(z) \approx \sqrt{\frac{2}{\pi z}} \sin\left(z - \frac{3\pi}{4}\right),$$

$$H_{0}^{(2)}(z) \approx \sqrt{\frac{2}{\pi z}} e^{i\left(z - \frac{\pi}{4}\right)}, \quad H_{1}^{(2)}(z) \approx \sqrt{\frac{2}{\pi z}} e^{i\left(z - \frac{3\pi}{4}\right)};$$
(38)

Після знаходження функцій Ханкеля нульового та першого роду другого порядку та коефіцієнта *B*, не виникає затруднення знаходження фізичних характеристик досліджуваного перехідного процесу, як наприклад

гідродинамічний тиск

$$p\Big|_{r=R} = \frac{\frac{d}{a}U_0}{-H_1^{(2)}(\omega R) + \frac{b}{a}H_0^{(2)}(\omega R)}\omega H_0^{(2)}(\omega R),$$
(39)

переміщення циліндричної оболонки

$$u\Big|_{r=R} = -\frac{\frac{d}{a}U_0}{-H_1^{(2)}(\omega R) + \frac{b}{a}H_0^{(2)}(\omega R)}\omega H_1^{(2)}(\omega R).$$
(40)

Список використаних джерел:

1. Векслер Н.Д. Информационные проблемы гидроупругости. – Таллинн: Валгус, 1982. – 246 с.

2. Гузь А.Н., Кубенко В.Д., Бабаев А.Э. Гидроупругость систем оболочек. – Киев: Вища школа, 1984. – 466 с.

3. Мнев Е.Н., Перцев А.К. Гидроупругость оболочек. – Л.: Судостроение, 1970. – 366 с.

4. Буйвол В.Н. Колебания и устойчивость деформируемых систем в жидкости. – Киев: Наукова думка, 1975. – 190 с.

5. Гринченко В.Г., Улитко А.Ф., Шульга Н.А. Электроупругость. – К.: Наук. думка, 1989. – (Механика связанных полей в элементах конструкций: В 5 т.; Т. 5). – 279 с.

6. Мезон У. Пьезокерамические кристаллы и их применение в электроакустике. – М.: ИЛ, 1952. – 448 с.

7. Улитко А.Ф. К теории колебаний пьезокерамических тел // Тепловые напряжения в элементах конструкций. – 1975. – № 15. – С. 90-99.

8. Шульга Н.А., Болкисев А.М. Колебания пьезоэлектрических тел. – Киев: Наук. думка, 1990. – 228 с.

9. Рудницкий С.И., Шульга Н.А. Об одном варианте прикладной теории пьезокерамических оболочек // Прикл. механика. – 1986. – 22, № 3. – С. 24–30.

10. Седов Л.И. Механика сплошной среды. – М.: Наука, 1970. – Т. 1. – 492 с.; Т. 2. – 568 с.

11. Вовк И.В., Гринченко В.Т. Взаимодействие электроакустических преобразователей при различных способах их электрического возбуждения // Докл. XI Всес. акуст. конф. – Москва, 1991. – С. 143–146.

12. Пьезокерамические преобразователи / Под ред. С.И. Пугачева. – Л.: Судостроение, 1984. – 256 с.

Бабаєв О.А.

кандидат фізико-математичних наук, доцент;

Штефан Н.І.

кандидат технічних наук, доцент;

Гнатейко Н.В.

кандидат технічних наук, доцент, Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

АНАЛІЗ ПЕРЕХІДНИХ ПРОЦЕСІВ ПРИ ПРИЙОМІ АКУСТИЧНИХ ХВИЛЬ ЦИЛІНДРИЧНОЮ П'ЄЗОКЕРАМІЧНОЮ ОБОЛОНКОЮ

стаціонарної Розглядається взаємодія плоскої хвилі тиску, шо розповсюджується у нескінченному просторі ідеальної стисливої рідини і яка контактує нескінченно тонкостінним довгим циліндричним 3 п'єзоперетворювачем, полярізовано радіальному який y напрямку.