ФІЗИКО-МАТЕМАТИЧНІ НАУКИ

Бабаев А.А.

кандидат физико-математических наук, доцент;

Штефан Н.И.

кандидат технических наук, доцент;

Гнатейко Н.В.

кандидат технических наук, доцент, Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского»

РАБОТА ОДНОМОДОВОГО СФЕРИЧЕСКОГО ПЬЕЗОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ (ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ)

сложных режимах эксплуатации пьезоэлектрических преобразователей, робота которых связана с укорочением длительности действующих импульсов использование электрических сигналов сложной конфигурации требует учета переходных стадий процесса и повышения требований при построении математических моделей и при этом является весьма важно располагать информацией о точности с которой можно описать реальные физические объекты.

В работе выполнены экспериментальные исследования и проведен сравнительный анализ результатов измерений с теоретическими которые получены в рамках линейной теории электроупругости, основанной на гипотезах Кирхгофа-Лява.

Описание измерительной установки. В качестве объекта использовался сферический пьезокерамический излучатель изготовленный из пьезокерамики марки ЦТБС-3 диаметром d=0,051 м и толщиной h=0,025 м поляризованный в радиальном напрвлении. Используемый преобразователь, с точки зрения математического моделирования рассматриваемой оболочки удовлетворяет условиям, что он тонкостенный и дает возможность описания в рамках гипотез Кирхгофа-Лява — $R/h \le 0.1$ (R,h — радиус и толщина).

Исследования проводились в измерительном бассейне Киевского НИИ Гидроприборов в соответствии с требованиями РД 5.8361-86 с использанием электрической структурной схемы приведенной на рис. 1.

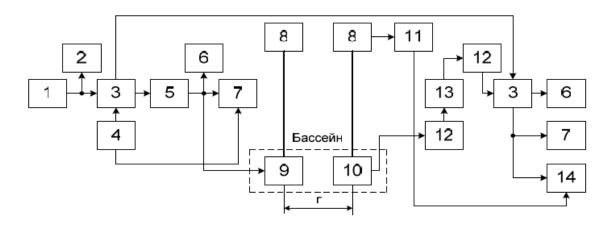


Рис. 1. Электрическая структурная схема

Гидрофон располагался от излучателя в ближнем поле на расстоянии $r \le 2d^2 / \lambda$, где r — расстояние между излучателем и гидрофоном; λ — длина волны $(\lambda = 0.0401 \text{ m}).$

Требования к условиям проведения измерений в части помеховой ситуации, заключается в том, что чувствительность излучателя в режиме излучения должна обеспечивать в месте розмещения гидрофона акустический сигнал, превышающий давление акустических шумов в полосе $\frac{1}{3}$ октавы не менее, чем 12 дБ.

$$\beta = 4 \frac{P_u}{u} r, \tag{1}$$

Результаты исследования и их анализ. При проведении исследования измерения проводились 10 раз для каждого положения щупа-гидрофона относительно преобразователя. Результаты усреднялись по 10 реализациям. Погрешность результатов измерений при доверительной вероятности составила P = 0.95 находилась в пределах $\delta_0 = \pm 21\%$.

В первом случае, поворачивая излучатель вокруг своей оси с шагом $\Delta = 20^{\circ}$, в направлении $\theta = \theta_1 = 90^\circ$ экспериментально было получено амплитудное угловое распределение (относительно угла $^{\phi}$) ближнего поля в установившемся режиме колебаний.

Результаты, представленные в безразмерном виде, получены путем деления амплитуды снимаемого с осциллографа напряжения при заданном значении угла φ на максимальное напряжение ($U(\varphi)/U_{\max}(\varphi)$). Полученные результаты лежат в пределах общепринятой погрешности измерений 3 дБ, что подтверждает использование принятой теоретической модели преобразователя в части его осессиметричности относительно оси вращения.

Во втором случае при помощи осциллографа проводилась фиксация конфигурации начальной стадии импульса снимаемого с гидрофона, при возбуждении излучателя электрическим сигналом известной формы, и сравнение ее с конфигурацией полученной теоретически.

Приведем осциллограмму теоретически рассчитанного акустического импульса на поверхности сферического пьезоэлектрического преобразователя

(рис. 1) при возбуждении электрическим импульсом длительностью 1 мс и одночастотным заполнением на частоте собственных колебаний сферической оболочки.

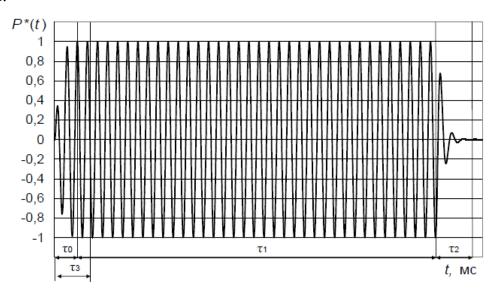


Рис. 2.

Следует отметить, что длительность рассматриваемого временного интервала меньше времени, необходимому для прихода к излучателю сигнала отраженного от гидрофона. Поэтому присутствие гидрофона в ближнем поле не влияет на форму анализируемого импульса.

Сопоставление полученных экспериментальных и расчетный результатов свидетельствуют об их хорошем совпадении. Так в любом направлении отличия экспериментальных и расчетных амплитуд в экспериментальных точках не превышают 3 дБ. В боковом напрвлении отличия более существенны. Следует отметить, что наблюдается отличие экспериментальных и расчетных осциллограмм в амплитудах, несовпадение точек пересечения с осью времени, а также разная длительность переходного процесса. Указанные отличия объясняются влиянием входных электрических цепей, в частности фильтра, а также тем, что математической моделью принимается, что оболочка является абсолютно сферической конструкцией, то время как реальный преобразователь имеет узел крепления. Близостью к УЗЛУ объясняется большее отличие от теоретических экспериментальных данных, полученных в боковом направлении (линия 1).

На основании выполненных расчетов и экспериментов можно сделать вывод о применимости предложенной модели сферических пьезоэлектрических оболочек, основанной на гипотезах Кирхгофа-Лява, в нестационарных задачах гидроэлектроупругости при расчетах акустических преобразователей.

Список использованных источников:

- 1. Гринченко В.Т., Улитко А.Ф., Шульга Н.А. Электроупругость. т.5 Механика связанных полей в элементах конструкций. – Киев.: Наукова думка, 1989. – 280 с.
 - 2. Мнев Е.Н., Перцев А.К. Гидроупругость оболочек. Л.: Судостроение, 1970. 366 с.