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The article is describes the search of exact solutions of nonlinear differential equations by the method of
symmetry reduction Sophus Lie. The article deals with theoretical information and features of the method
Lie. The method Lie applied to a cylindrically symmetric nonlinear wave equation D’Alembert. Sets out the
conditions conformal invariance of this equation. Used conformal symmetry of the equations for find exact
solutions. Found some solutions of the reduced equations and exact solutions of the cylindrically symmetric

wave equation.
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ntroduction. The result of searches the de-

cisions of wvarious problems mathematical
description of natural processes is differential
equations. Development of integration methods
differential equations assisted to becoming mathe-
matical physics science. In the development pro-
cess, widespread enough approach of construction
exact decisions of nonlinear differential equations
was the principle of symmetry equations that
started by Norwegian mathematician Sophus Lie.
Symmetry in mathematical and theoretical phys-
ics is considered as the principle from a multiple
number of possible equations and models the rela-
tionship of the actual processes to select the most
comfortable to use. This principle plays an impor-
tant role in modern scientific researches. All ba-
sic equalizations of mathematical physics — New-
ton, D’Alambert, Laplace, Maxwell, Schrodinger
etc. — own wide symmetry properties. The method
of S. Lie based on application algebra invariance
of differential equalization for finding him exact
decisions is symmetries of Lie. The fundamental
opening of S. Lie consists in that — difficult non-
linear conditions of invariance differential equal-
izations, are in the case of continuous groups, it
is possible to replace equivalent, but more simple
linear conditions, which represent the «infinitesi-
mal invariance» of differential equalizations rela-
tively of constituents this group. The most general
group of continuous symmetries of the system can
be certain obviously. An important contribution to
this research done Wilhelm Fushchych. An impor-
tant area, in which he and his students worked,
were use algebra and groups the invariance of
nonlinear differential equations to find their solu-
tions. For search solutions we using sub algebras,
algebra invariance of differential equations build
special substitution, is “ansatzes“. Ansatzes reduc-
es original equation to equation with fewer inde-

pendent variables. In this way, we managed to
get the whole classes of exact solutions of many
basic equations of mathematical physics — Liou-
ville, D’Alembert, Monge-Ampere, Born-Infeld,
Schrodinger and many others. Presently actual re-
searches of all basic differential equalizations of
mathematical physics and their generalizations by
symmetry and conditional symmetry.

1. Use of symmetry to searching precise decisions
cylindrical-symmetric non-linear wave equation

It is known, that the wave equation looks as
ou = F(x,u), (1)
equation (1) retains conformal

n+3
symmetry AC(1,n) only in case F(x,u)=2Au"',n=1,
where A - arbitrary constant. During the descrip-
tion of actual physical processes, that is when
n =3, we use equation
Uyy = Uy — Uy — Uy = F(u). (2)
Let process, which is describe by equation (2), is
cylindrically symmetric. It is means that

u(‘xﬂﬂxlﬂxbx}) :u(xmxlap): (3)

where p =x? + x}. Substitute (3) in (2), we get

If F(x,u) =0,

1
Upy = Uy — Uy, —— U, = F(u).

If rewritten told above for the arbitraries num-
ber of explanatory variables u = u(y,, i,-.-s Von)-

If this process which is describe by equation
— Uy NpiN = F(Ll),

spherical

Ugy — Uy — o
has a that is

U= U(Yy, V5o Yyrs p), Where p =y, +yy, we will
similarly receive the equation

u —ﬁup =Fu). 4)
o

n-1n-1 — %pp

symmetry,

Uy — Uy — ... — U

Let us assume y, =X, ), = X,..0s ¥,y =X, 15 P = X,
then equation (4) looks as
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N
Uy = Uy — oo — Uy, —— U, = F(u). (5)
where u=ux),x= x(xo,}) eR., Rewritten
equation (5) as follows
Du—ﬁu,, = F(u). (6)
x’l
Equation (6) has conformal symmetry.

Use the theorem.
Theorem. Equation (6) if N #0 invariant rela-
tively conformal algebra AC(l,n-1):

1-n-N

<0y, d 5 =x"0, —x0,, D=x,0, +X,0, - ud,,

K, =2x"D - (x,x" —=x})8, >, a,f=0,n-1,
in only case when,

Fu) = 2, 4 (7)

k-1’
where 1 i k- arbitrary constant.
In a case n=2 and under a condition (7) equa-
tion (6) has an appearance

N=1-n+—

5-k

uoo—u”—uzz—ﬁuzz/lu",N— N¢0k¢1(8)

X, k-
Use a symmetry of the equatlon (8) for finding
solutions, which we will finding in same an ap-
pearance as
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Inaformula(9) ¢ — unknownfunctionwhichneeds
to be defined, and o’ = M,wl = 0'(x), 0’ = 0*(x) -

is invariant conformal algebra AC(l,1).If substitut-
ed ansatz (9) in equation (8), we will have

1 Ly 1 2u 2 2.u
©,0"p, + 2a) O™y + 0,07 0y +

2 .o,
( m—n22+7ﬂ”j%+

(10)
+ Dwz—ia)z-szwz’“ 0, +
(k-Dx, * f7* ’
_ k k:0.
f[f (k_l)zfzfp] rf

Having considered a formula (10) it is compat-
ible to table 1.1, where the corresponding speci-
fied values of invariant variables, we will receive
nine not equivalent reduced equations for function
definition (p‘

o

5-
- oyt k- 1(01“'/1(9 =0,
5-k k+1
—4q? 4-—
Oy + k-1 TR -1

L (@) + gy, + 0'o’p, + (@) +4)ey, +30'e, + 307, +q(p) = 0,

2.y - 2w'¢12 (s At =0,

(98]

u(x) = f(x)p(e', ), 9) 4 (wl)z(Pn + wlwz(/’lz +((@)+ 4)p,, +30'p, + 30)2(/’2 +q(p) =0,
Table 1.1.
Invariants conformal algebra AC(1,1)
Ne @y @ @,
1 u X, ax,
2 u X, X,
3 R bx x2+1
ux, -
X, X,
4 = ax x> +1
ux, -
X, X,
5 uszTl g Bx+mlnx,
X
ol W “ o
x2
7 5 X*px +ax (x* +1)% + 4(bx)*
ux2 2 2
X X
Nl 2 x2 +1 2 2 2
8 = arctg —arctg (X" + 1) +4(bx)
ux, 2bx - 2
X
N+l 2\2 2 2
9 ux2z X ﬁx2+ ax lln (x%) +2(ax) —arctgx—
X X ax
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5. 4(601)2(/)“ =21+ ma)l)(o12 + m2¢22 + Sw](pl - 2mp, +q(p) =0,
6. 9(0)1)2‘911 -2+ wlwz)¢12 + (“)2)2(/)22 + 15“’1(01 - a’z(Dz +q(p) =0,
7. (@) + Doy, - o' (0" + gy, + 0’0" + Dy + 20'p, - (0 +2)p, +

+M:0,
4

8. [iﬁ%]%+w2<w2+4)w22+2<w2+2><o2+@=o,
o° o +4 4

9. 4(0') + Do, + 20" - Do, + @y + 8a)'q)l -2¢,+q(p) =0,

where =4 + A",
q(p) T
In this table the following designations
are injected: ax = oyX, — X, bx = byx, — bx,

x> =x; - x{ - x3;a,b,a, B —arbitrary constants vec-
tors which satisfying conditions
a*=-b*,ab=0,0 =a+b, =a—b,m = constant.

2. Partial decisions of reduced equations

Having analyzed received reduced equations,
we will specify partial decisions. If in 7° ¢, =0,let
us receive an ordinary differential equation:

k-2 A

(P"'*(Pk:O,

0* (0 + 4)g,, + 2w* +2)p, + %1 2

partial solution is

o(0?) =[7%(k71)2w2}ﬁ. (11)
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Ansatz (9) and function (11) give the chance to
find the solution of the equation (6)

u(x) = [—%(k P-4 D)+ 4(bx)2}}

i
1k

The results received above can be multiply by
means of transformation of an invariance of the equa-
tion (6). These transformations have an appearance

€"c,,(x; —0,(x* - x37))

'xoz
o
e"x’
X, —> ,
o
2
em 1-k
u——u|—| |,
o
2 2
where  o=1-20,x"+0,0°(x" - x;),b,,¢,,0,,m—

arbitrary parameters.

3. Conclusions

In the this article sets out the conditions confor-
mal invariance -cylindrically symmetric nonlinear

wave equation D’Alembert DM*EL!" = F(u) rela-
tively conformal algebra AC(l,n—1).This eliminat-
ed the dependence between the exponent functions

n+3

F(x,u) = Au"' of the number of spatial variables exist
for the classical equation ou = F(x,u) for the require-
ment of conformal invariance relation algebra AC(1, n).
A search of invariants and ansatzes conformal algebra
AC(1,1), and a partial decisions of reduced equations.
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