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AB INITIO STUDY OF THERMODYNAMIC PROPERTIES
OF THE HEXAGONAL TISI,LB INTERMETALLIC PHASE

Summary. In this paper first principles quantum mechanical approach was used to calculate ab initio ther-
modynamic properties of Ti Si,B intermetallic phase. To optimize the geometry of the unit cell appropriate
potentials which describe each atom of Ti Si,B — phase were applied with the use of VASP simulation pack-
age. Moreover, the effect of phonon excitations on the lattice parameters, bulk and shear moduli is studied.
The results show that Ti,Si,B phase tends to be brittle due to B;/G; < 1.75. However, the thermal expansion
coefficients along with a- axis and b-axis change similarly what suggests that 1nvest1gated phase is thermally
stable. Based on free energy calculation the temperature dependences of various quantities such as the lattice
constants, thermal expansivity and isobaric heat capacity were reported. Theoretical results were compared
with the available experimental data and other ab initio calculations. As a result, it has been proved that
Ti Si,B phase might be considered as high temperature material.

Keywords: ab initio study, DFT calculations, VASP approximation, intermetallic phase, high temperature
structural applications.

Szymon Swiontek
DagkybTeT MAaTEePiaI03HABCTBA TA KEPAMIKH,
AGH VHiBepcuTeT HAYKH 1 TEXHIKA

AOCIIIKEHHA AB INITIO TEPMOJNHAMIYHUX BJIACTUBOCTEMN
IHTEPMETAJITYHOI ®A3U TISI,B

Anoramiga. ¥ i po60Ti HePUIMMY IPUHIUIAMA 6yB BHKOPHUCTAHHUN KBAHTOBO-MEXaHIUHNI Hi,HXi,ZI; I o04YmcC-
JIeHHS TePMOJMHAMIYMHIX BJIACTUBOCTel 1HTepMeTamiaHol pasu T1S1,B. V mirepaTypi rocTymHl aumte o0MesKeHl
maHi 1po (asosl piBHOBary. Blipmicts eKCIePUMEHTaIbHUX BI,HOMOCTeI/I CTOCYIOTHCS PO3PAXOBAHUX 130TepPMIU-
HUX JIJISHOK. Y IIH poboTi, B paMKax JOCII/AKeHb I0B'I3aHuX 13 cucremamu Ti— Si—B, s IIPEZICTABJISIO Pe3yJIb-
TaTH NPHUCBSIYEH] aTepMofuHaMIvHuM BractuBocTsaM TigS1,B. Jlna ontumisamii reoMeTpli oAMHIUIHOI KOMIPKH
OyJIv 3aCTOCOBAHI BiIITOBIIHI MOTEHITIAIH, SK1 OHI/ICyIOTb RomeH arom Ti,Si,B — dasu 3 BUKOPUCTAHHSM IIAKeTy
MOJIeJII0BAHH VASP. Kpim Toro, BUBYaeThCsI BILJIUB 30y xeHHs (bOTOHlB Ha [MapaMeTpH PeInTKH, 00'eMHl Ta
acyBH1 Mozyl. llorim, BukopucTOByIOUM hopmaniam napamerpis ['pionesena, Oyno BUSHAYEHO 3HAYEHHS KO-
eiiieHTa JIHIHHONO TEIJIOBOrO PO3LIMPEHHS — K (yHKUII Temneparypu. Pesyisrarte mokasyiors, mo dasa
Ti Si,B, saix mpasuIO, KpHUXKa 3aBasiku B /G <1,75. OnHax, KOe(IIIEHTH TeILIIOBOI0 POSIIMPEHHS Pa3oM 13 BicCio
a1b AMIHOOTHCS AHAJIOTIYHO, 110 I‘OBOpI/ITB Ipo Te, 110 LtocmmicyBaHa dasae Telequ crabiiabpuon. Masa, axa
Mae HaWiMeHIlle 3HAYeHHs eHepril IJ1acTa, € Kpalloio y KOHKPeTHIHN ckJIamoBii cucremi. Ha ocHOBI po3paxyHKy
BLIBHOI eHeprii MOBLIOMJISIIOCS IIPO TEMIIEPATYPHI 3aJIeKHOCT] PI3HUX BEJIWYUH, TAKUX AK IIOCTIHHI PeIriTKH,
TEIJIOBA PO3IIMPEHICTh Ta 1300apHa TeIJIOEMHICTh. TeopeTuyHl pe3yIbTaTh MOPIBHIOBAJINCH 3 HASIBHUMU €KC-
[IepUMEHTaIbHIMY NaHUMU Ta IHIINME 009HUC/I0BATbHIMUA MeTogamu. B pesynbrari 6ys1o noeneHo, mo dasa
Ti Si,B Moske poaryiagaTucsa K BUCOKOTeMIIepaTypHHui MaTepiar. a dasa BBamKaeTHCA BUCOKOTEMIIEPATY PHIM
CTpYKTypHI/IM 3aCTOCYBaHHAM 4epe3 ix (heHOMeHabH] (DISHYHI, MeXaHIYHI Ta XIMIYHI BiacTuBOcTl. Bymo mo-
Bezeno, mo Ti Si,B HOBOJISATECS IPUPOJHUM LIISXOM, I€MOHCTPYIOUN HOSUTUBHE 3HAYCHHS LTEC y Bcix Tem-
mepaTypHuxX MesKax Bim 0 K mo 2000 K. Oyuxkrii LTEC PO3PAaXOBYBAJIUCh 5K B IJIOIIMHI, TAK 1 B II03aIlJIAHOB1
"anpamen. Kpim toro, saxon Jlymonra-Ileri Taxo:x OyB miaTBepasxeHNN, He IPOABIISIOUN sKOTHNX HEIIPUPOIHNAX

siBu,. B pesysbrari poapaxyH}ciB daza Ti Si,B nosunna GyTu crifikimnoio nmopisasawo 3 dasomo Ti,B,.
Kmrouosi cmosa: mocmimkeHHs in initio, ooumcaenasa DFT, mabmmmxenusa VASP, imrepmeramiuna gasa,

BHCOKOTEMIIEPATYPHI CTPYKTYPHI IIPOTPaAMH.

Aims of the article. The main aim of this
paper is to characterize the thermodynamic
properties of the Ti Si,B phase. Additional goal is
to present LTEC curves with taking into account
Griineisen formalism. At the end final determina-
tion of whether the phase Ti Si,B has potential in
high temperature apphcatlons

The most recent scientific researches. The
thermodynamic studies over Ti Si,B phase are made

by C. Colinet, J. C. Tedenac in 2011. Nowadays team
of A. S. Ramos sheds new light on the electronic struc-
ture of this intermetallic phase in 2020. At present,
new development perspectives have appeared.
Problem statement. Rietveld refinement of X-ray
powder intensity data revealed a hexagonal crystal
structure of T1 Si,B [1]. Nowadays, intensive ab initio
research is bemg carried out to predict the physical
and chemical parameters of the structure [2]. This ter-
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nary phase belongs to 189 (P — 6 2 m) space group with
lattice parameters a = 0.68026 nm and ¢ = 0.33374 nm
obtained from high temperature X-ray diffraction at
room temperature [3]. The Wyckoff positions of each
atom are: Ti, = 3g (XTi,, 0, 1/2), where XTi = 0.2418;

= 3f XTi, 0, 0) where XTi, = 0. 5996 B = 1a
(0 0, 0) and S% 2d (1/8, 2/3, 1/2) (Fig. 1). The terna-
ry Tig Sl B- phase forms from the liquid through the
perltectlc reaction: L + TiB + Ti,Si, « Ti Si,B. RM-SiB
(RM-refractory metal) alloys have been considered to
high temperature structural applications due to their
phenomenal physical, mechanical and chemical prop-
erties such as low thermal expansion anisotropy a /a,
~ 1 at room temperature [3], high mechanical strength
(above 150 GPa) [4], high melting temperature (1473
K) [5], oxidation resistance (900 °C) [6] and relatively
low density (4.3 g/lcm3) [7]. Several studies have been
recently carried out aiming at the use of metal-Si-B
systems for high temperature structural applications
[8-10]. In this sense, alloys which microstructure are
formed by intermetallic phases in equilibrium with re-
fractory metal or alloy could be developed [11]. How-
ever, informations concerning Ti-Si-B ternary system
are very narrow. Only limited phase equilibria data
are available in the literature. Most of the experimen-
tal informations concern the calculated isothermal
sections at 727°C, 1250°C and 1600°C [12—14]. As part
of the studies related to the Ti-Si-B systems, in this
paper I present results focusing at thermodynamic
properties of Ti Si, B.

Figure 1. View of Ti S i,B
primitive cell along the c axis

Source: figure made by author

Scientific analysis. Ab initio calculations of
thermodynamic properties of the hexagonal Ti Si,B
were performed within the density functional theory
(DFT). The Ti(3d%4s?), Si(3s23p?) and B(2s?2p?) elec-
trons were explicitly treated as valence electrons. The
pseudopotential method with the generalized gra-
dient approximation (GGA) parameterized by Per-
dew-Burke-Ernzerhof method (PBE) as implemented
in the VASP code [15] was used to optimize geome-
try and atomic positions of the 54-atomic supercell.
Atoms were represented by the projector-augmented
wave pseudopotentials (PAWs) provided by VASP.
A plane-wave expansion up to cutoff energy 420 eV
was applied. The Brillouin zone of each super-cell was
sampled using the 5x5x10 k-point mesh generated by
the Monkhorst-Pack scheme. A combination of conju-
gate gradient energy minimization and a quasi-New-
ton force minimization was used to optimize geome-
try and the atomic positions of the supercells. During
thermodynamic calculations, the lattice vectors of the
super-cell were frozen at the GGA optimized value
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and the atomic positions were relaxed until the Hell-
man-Feynmann (HF) forces acting on all atoms of the
super-cell were smaller than 10 eV/A. Dynamical
properties of the Ti S1, B structure were calculated
using the direct met(iloél [15-16] based on the forces
calculated via the Hellmann-Feynman theorem. The
nonvanishing Hellmann-Feynman (HF) forces acting
on each atom in the given supercell are generated
when a single atom is displaced from its equilibrium
position. The HF forces were created by displacing
crystallographically nonequivalent Ti, Si and B atoms
from their equilibrjum positions. The displacement
amplitude of 0.03 A was used. To minimize system-
atic error, both positive and negative displacements
were applied. The total energy was converged down
to 1078 eV/super-cell.

Thermodynamic properties of the Ti Si,B.
The termodynamic properties of the Ti Si,B struc-
ture were obtained within the qua31harmon1c ap-
proximation and using the direct method [14], which
uses the DFT calculated HF forces acting on all the
atoms in a given supercell. Along with this approach
a change of the crystal volume due to finite tempera-
ture is mapped with respect to change of the crystal
volume at T = 0K. Thermodynamic functions are cal-
culated using standard formulae for harmonic crys-
tals. Anharmonic effects are, to some extent, taken
into account by the volume dependence of the phonon
frequencies. Phonon frequencies at constant volume
are assumed to be independent of temperature. The
relative change of the (q, j) mode frequency w(q, j)
with volume V is usually described by the mode-spe-
cific Gruneisen parameter which is a dimensionless
quantity defined as:

L d(no(kj) v eo(k))
U n ~o(k)) oV @

The thermal Griineisen parameter y(T) can be
obtained as the following average:

v(k, j)C, (k,Jj
Y (T) - kg(k’jcjv)(k,/(') ) @

where the contribution from each mode (q, j) is
weighted by its contribution to the specific heat Cy(q, j).
The denominator of the above equation is equal to
the lattice contribution to the heat capacity at con-
stant volume and it takes on the following form:

_ hwk )\’ 1
Cv = kB;( 2kgT ) sinh2(hw(k,j)/2ksT) @)

where T is the temperature, k, and h denote the
Boltzmann and Dirac constants respectively. One
can also express C,, via the calculated phonon den-
sity of states g(oo) Hence, the equivalent form of
equation (3) is given by:

exp(hw/kgT)

foxpChao/kgT) — 177

Cy = Nrkg jwdwg(w)(h/kBT)
0

where N is the number of primitive unit cells and
r stands for the number of degrees of freedom in the
unit cell. In the quasiharmonic approximation the
phonon density of states can be used to evaluate
phonon-dependent thermodynamic quantities as a
function of volume and temperature. In particular,
the Helmholtz free energy of the material can be
expressed in the following way:
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F(V,T) = E(V) + Fo(V,T) = E(V) + kT - foog(a))ln [zmh( h
0

where E(V) is the energy of the motionless lat-
tice obtained directly from ab initio calculations,
while F, .(V, T) denotes the vibrational free energy
of a harmonlc system. The term F  (V, T) includes
the vibrational zero-point energy quch remains fi-
nite for T — 0. Any purely electronic contribution
is neglected. One has to note that only F, (V T) de-
pends explicitly on temperature. At the glven tem-
perature T, the equilibrium volume follows from a
minimization of F(V, T) with respect to volume V.
The calculated F(V, T) can be used to study thermal
properties and thermodynamic parameters of the
crystal. The volume thermal expansion coefficient

is defined as:
1oV
a, (T)= V(@Tj (6)
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were obtained as the derivative of the changing
cell volume with respect to temperature according
with the relation for volume of hexagonal structure
V = a%c'sin(60°). The calculated structural param-
eters of the TiSi,B are presented at (Fig. 2). The
received curves are in good agreement with high
temperature x-ray experimental measurements [3].

Elastic properties of Ti Si,B crystal

The optimized structure was used to calculate
elastic constants of TiSi,B crystal. The number
of elastic constants needed to describe the elastic
response of a crystal depends on its symmetry.
The elastic tensor of the hexagonal system is de-
termined by five independent elements i.e. C,, C ,,
C,,, C,, and C,,. What is more elastic tensor in thls
case is symmetrlc Cl = C and there are some sym-
metry relatlons C = 022, C,=¢C,, C,=C, and
C, = 1/2(C, 5 The computeé components of
the elastic tensor For Ti,Si,B are given in table 1.
By the inversion of elastic tensor we are receiving
the compliance tensor which elements S, = C. can
be used to derive the linear compresmbﬂltles a]long
the principal axes of the crystal. For hexagonal
structures symmetry of elements and symmetry re-
lations of compliance tensor are exact the same as
for elastic tensor. The calculated components of the
compliance tensor for Ti Si,B are given in table 2

Table 1
Elastic constants (in GPa) of Ti Si,B
330 — C, Cp Cy Cu Cy
0 500 1000 1500 2000 303 78 87 249 114
Temperature (K) Source: table made by author
Figure 2. The a- and c-axis lattice constants of C I tants (in 102 GP 'Eable 2
Ti Si,B structure. The lines represent ab initio ompliance COI}ST?%.Séln a™)
calculated data, points refer to experimental high of 11,51,
temperature x-ray diffraction results [3] S, S, S.. S.. S,
Source: figure made by author 3.778 -0.650 -1.098 4.787 8.775

In the quasiharmonic approximation the quan-
tities: y and the isothermal bulk modulus
B, V(G%F(\y T)/6°V), are connected by the Griinei-
sen relation:

v(T) = (7)

Thermal expansivity of a crystal leads to the dif-
ference between the heat capacity at constant pres-
sure Cp and the heat capacity at constant volume
C,, which is given in the quasiharmonic approach
by the following expression:

C,-C, =a} (T)BVT (8)

The heat capacity Cy follows the Debye mod-
el and approaches the Dulong-Petit limit at high
temperatures, while C, increases linearly with T at
high temperatures.

Results and discussion

Structural properties of Ti Si,B — phase

The computed with the use of (;5) relation F(V, T)
values could be useful to determine lattice con-
stants of the crystal. These structural parameters

Source: table made by author

The linear compressibilities can be easily derived
from the compliance tensor S.. Full expressions for
an arbltrary direction in a trjlchmc crystal can be
found in [17], along the coordinate axes they are:

3 3 3
K,=YS, K,=>8,, K.=>5; 9
j=1 j=1 j=1
Hence, the bulk compressibility is expressed as [17]:

K=335, =K, +K, +K, (10)
i=1 j=1
There are several different schemes which ena-
ble to obtain the Reuss averaged bulk/shear mod-
uli. By an assumption of a homogeneous stress we
can use a special averaging for the individual S
expressed as [17]:

1 1

B, —_— — 11
BOK 8, +8, +8, +2(S, + S5 +85) (1D

15
Gy = 12
R 4(Sd)—4(S,2+S,3+S23)+3(S44+S55+566)( )
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Figure 3. Computed thermal expansion
coefficients along with a- and c-axis with total
volumetric thermal expansion parameter

Source: figure made by author

where S, =S +S,,+S,, indicates the sum of the
diagonal elements of compliance tensor. Table 3
shows the resultant bulk and shear moduli as well
as the linear compressibilities along the principal
axes of TiSi B crystal. The above computed quan-
tities can be applied to calculate the Young’s modu-
lus E and Poisson’s ratio v for an isotropic material
by the following relations (13) and (14):

_ 9BiGr (13)
3B, + G,

Table 3
Linear compressibilities, bulk B, and shear
G, moduli of TiSi,B. Compressiﬁilities and
moduli are given in 1072 GPa™ and GPa,

respectively
Ka Kh Kr BR GR
2.030 2.034 2.587 150.377 | 109.055
Source: table made by author
3B, - 2G,

RETERH) .

Table 4 shows the final Young’s modulus and
Poisson’s ratio. The ratio B,/G, for the polycrys-
talline phases is a factor indicating the ductility
or brittleness of a material and the critical value
which separates ductile and brittle materials is
about 1.75 [18]. According to this criterion, Ti Si,B
is predicted to be brittle B./G = 1.379.

Table 4
Young’s modulus, Poisson’s ratio, B, /G, and
E/G; of Ti Si,B. Moduli and appropriate
ratios are given in GPa and a.u., respectively
E v B,/G, E/G,
263.474 0.208 1.379 2.416

Source: table made by author
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Figure 4. Temperature dependence
of the constant pressure and volume heat
capacity C, and C,, respectively

Source: figure made by author

Thermal properties of Ti Si,B supercell

Linear thermal expansion coefficient LTEC
measures the fractional change in size per degree
change in temperature at a constant pressure. To
calculate total volumetric thermal expansion pa-
rameter it is convenient to use a, = 2a_+a_ expres-
sion, where a_ and a, represent thermal expansion
coefficients alaong a- and c-axes, respectively. It is
visible positive trend of computed dependences
(Figure 3), the thermal expansion along the c axis
is higher than along the a axis.

Heat capacity of Ti Si,B structure

Temperature depen(iences of molar heat ca-
pacity at constant pressure and at constant vol-
ume were calculated with the use of (8) expression
(Fig. 4). Solid curve represents determined C,
values according to the harmonic approximation.
Dashed curve denote C, values obtained with-
in the quasiharmonic approximation. The term
o’ (T)BVT accounts for the lattice anharmonicity.
It is relevant at higher temperatures where the
difference between C, and Cp can be significant.
Heat capacity C, was computed based on ab initio
considerations (3), afterwards by (8) relation heat
capacity C, was derived. The received curves are
in good agreement with Dulong-Petit law predic-
tions for solid systems.

Conclusions. The structural and thermo-
dynamic properties of Ti6Si2B crystal have been
studied by the quasiharmonic approximation with
density functional theory DFT. The calculated
thermodynamic properties of Ti SiB — phase
stay in acceptable agreement with the available
experimental data.
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